Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Genes (Basel) ; 13(10)2022 10 18.
Article in English | MEDLINE | ID: covidwho-2071332

ABSTRACT

Since the emergence and rapid transmission of SARS-CoV-2, numerous scientific reports have searched for the association of host genetic variants with COVID-19, but the data are mostly acquired from Europe. In the current work, we explored the link between host genes (SARS-CoV-2 entry and immune system related to COVID-19 sensitivity/severity) and ABO blood types with COVID-19 from whole-exome data of 200 COVID-19 patients and 100 controls in Vietnam. The O blood type was found to be a protective factor that weakens the worst outcomes of infected individuals. For SARS-CoV-2 susceptibility, rs2229207 (TC genotype, allele C) and rs17860118 (allele T) of IFNAR2 increased the risk of infection, but rs139940581 (CT genotype, allele T) of SLC6A20 reduced virus sensitivity. For COVID-19 progress, the frequencies of rs4622692 (TG genotype) and rs1048610 (TC genotype) of ADAM17 were significantly higher in the moderate group than in the severe/fatal group. The variant rs12329760 (AA genotype) of TMPRSS2 was significantly associated with asymptomatic/mild symptoms. Additionally, rs2304255 (CT genotype, allele T) of TYK2 and rs2277735 (AG genotype) of DPP9 were associated with severe/fatal outcomes. Studies on different populations will give better insights into the pathogenesis, which is ethnic-dependent, and thus decipher the genetic factor's contribution to mechanisms that predispose people to being more vulnerable to COVID-19.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , SARS-CoV-2 , Vietnam/epidemiology , Risk Factors , Asian People , Membrane Transport Proteins
2.
Vietnam Journal of Chemistry ; 2022.
Article in English | EuropePMC | ID: covidwho-1970083

ABSTRACT

Berberine (V1), lycorine (V2), hemanthamine (V3), aloperin (V4), dendrobine (V5) possess structural frameworks resembling known anti‐influenza and anti‐SARS‐CoV‐2 drugs, thus subjected for a computational screening. Their quantum properties were examined using density functional theory (DFT);the ligand‐protein inhibitability was evaluated using molecular docking simulation;physicochemical properties were obtained from QSARIS‐based analysis in reference to Lipinski's rule of five;pharmacokinetic parameters were assessed by ADMET‐based analysis. DFT calculations indicate that there are no abnormal bonding constraints observed;NBO analysis suggests all possessing favorable electric configurations for intermolecular inhibition. Regarding ligand‐2VIU, the order for static inhibitability is V3‐2VIU > V2‐2VIU > V1‐2VIU > V5‐2VIU > V4‐2VIU;Regarding ligand‐6LU7, the corresponding order follows: V2‐6LU7 > V3‐6LU7 > V1‐6LU7 > V5‐6LU7 > V4‐6LU7. An exceptional hydrophilic bonding (π‐cation) with the associated Gibbs free energy of ‐10.9 kcal.mol‐1 is detected in inhibitory complex V1‐2VIU. QSARIS‐based analysis reveals that all the candidates are highly bio‐compatible. ADMET‐based analysis specifies V2 and V3 as being safe and suitable for the use as orally administrated drugs. The results encourage further investigations for more in‐depth mechanisms and experimental validations, such as molecular dynamics simulation and in vitro enzyme assays.

3.
Vietnam Journal of Chemistry ; 60(3):333-345, 2022.
Article in English | EuropePMC | ID: covidwho-1970082

ABSTRACT

Baloxavir marboxil (D1), Baricitinib (D2), Galidesivir (D3), Nitazoxanide (D4), and Oseltamivir (D5) are well‐known performing broad‐spectrum activity against a variety of viruses, thus holding high potentiality towards SARS‐CoV‐2. Quantum properties were examined using density functional theory (DFT). The inhibitability of the drugs towards Angiotensin‐converting enzyme 2 (ACE2) and SARS‐CoV‐2 main protease (6LU7) was evaluated by molecular docking simulation, while their bio‐compatibility was justified by physicochemical properties obtained from QSARIS‐based analysis in reference to Lipinski's rule of five. Quantum analysis suggests that the compounds are highly favourable for intermolecular interaction towards protein structures. Given ligand‐ACE2 systems, the inhibitory effectiveness follows the order D3‐ACE2 > D4‐ACE2 > D2‐ACE2 > D5‐ACE2 > D1‐ACE2;and the corresponding order for ligand‐6LU7 systems is D2‐6LU7 > D4‐6LU7 > D3‐6LU7 > D5‐6LU7 > D1‐6LU7. Galidesivir is predicted as the most effective inhibitor towards both targeted protein structures (DSaverage ‐13.1 kcal.mol‐1) and the most bio‐compatible molecule (Mass 264.9 amu;LogP ‐0.9;Polarisability 26.8 Å3). The theoretical screening suggests all drugs, especially Galidesivir (D3), promising for treatment of SARS‐CoV‐2 infection and encourages in‐related clinical trials.

4.
Vietnam Journal of Chemistry ; n/a(n/a), 2022.
Article in English | Wiley | ID: covidwho-1858931

ABSTRACT

Baloxavir marboxil (D1), Baricitinib (D2), Galidesivir (D3), Nitazoxanide (D4), and Oseltamivir (D5) are well-known performing broad-spectrum activity against a variety of viruses, thus holding high potentiality towards SARS-CoV-2. Quantum properties were examined using density functional theory (DFT). The inhibitability of the drugs towards Angiotensin-converting enzyme 2 (ACE2) and SARS-CoV-2 main protease (6LU7) was evaluated by molecular docking simulation, while their bio-compatibility was justified by physicochemical properties obtained from QSARIS-based analysis in reference to Lipinski's rule of five. Quantum analysis suggests that the compounds are highly favourable for intermolecular interaction towards protein structures. Given ligand-ACE2 systems, the inhibitory effectiveness follows the order D3-ACE2?>?D4-ACE2?>?D2-ACE2?>?D5-ACE2?>?D1-ACE2;and the corresponding order for ligand-6LU7 systems is D2-6LU7?>?D4-6LU7?>?D3-6LU7?>?D5-6LU7?>?D1-6LU7. Galidesivir is predicted as the most effective inhibitor towards both targeted protein structures (DSaverage -13.1 kcal.mol-1) and the most bio-compatible molecule (Mass 264.9 amu;LogP -0.9;Polarisability 26.8 Å3). The theoretical screening suggests all drugs, especially Galidesivir (D3), promising for treatment of SARS-CoV-2 infection and encourages in-related clinical trials.

7.
ChemistrySelect ; 5(21): 6312-6320, 2020 Jun 08.
Article in English | MEDLINE | ID: covidwho-459169

ABSTRACT

GC-MS was applied to identify 24 main substances in Melaleuca cajuputi essential oil (TA) extracted from fresh cajeput leaves through steam distilling. The inhibitory capability of active compounds in the TA from Thua Thien Hue, Vietnam over the Angiotensin-Converting Enzyme 2 (ACE2) protein in human body - the host receptor for SARS-CoV-2 and the main protease (PDB6LU7) of the SARS-CoV-2 using docking simulation has been studied herein. The results indicate that the ACE2 and PDB6LU7 proteins were strongly inhibited by 10 out of 24 compounds accounting for 70.9% in the TA. The most powerful anticoronavirus activity is expressed in the order: Terpineol (TA2) ≈ Guaiol (TA5) ≈ Linalool (TA19) > Cineol (TA1) > ß-Selinenol (TA3) > α-Eudesmol (TA4) > γ-Eudesmol (TA7). Interestingly, the synergistic interactions of these 10 substances of the TA exhibit excellent inhibition into the ACE2 and PDB6LU7 proteins. The docking results orient that the natural Melaleuca cajuputi essential oil is considered as a valuable resource for preventing SARS-CoV-2 invasion into human body.

8.
ACS Omega ; 5(14): 8312-8320, 2020 Apr 14.
Article in English | MEDLINE | ID: covidwho-20895

ABSTRACT

Eighteen active substances, including 17 organosulfur compounds found in garlic essential oil (T), were identified by GC-MS analysis. For the first time, using the molecular docking technique, we report the inhibitory effect of the considered compounds on the host receptor angiotensin-converting enzyme 2 (ACE2) protein in the human body that leads to a crucial foundation about coronavirus resistance of individual compounds on the main protease (PDB6LU7) protein of SARS-CoV-2. The results show that the 17 organosulfur compounds, accounting for 99.4% contents of the garlic essential oil, have strong interactions with the amino acids of the ACE2 protein and the main protease PDB6LU7 of SARS-CoV-2. The strongest anticoronavirus activity is expressed in allyl disulfide and allyl trisulfide, which account for the highest content in the garlic essential oil (51.3%). Interestingly, docking results indicate the synergistic interactions of the 17 substances, which exhibit good inhibition of the ACE2 and PDB6LU7 proteins. The results suggest that the garlic essential oil is a valuable natural antivirus source, which contributes to preventing the invasion of coronavirus into the human body.

SELECTION OF CITATIONS
SEARCH DETAIL